Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Jundishapur Journal of Microbiology ; 16(1) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2303450

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has prompted researchers to look for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenicity in depth. Immune system dysregulation was one of the major mechanisms in its pathogenesis. The evidence regarding the levels of interferons (IFNs) and pro-and anti-inflammatory cytokines in COVID-19 patients is not well-established. Objective(s): Therefore, this study evaluated the expression level of type-I, II, III IFNs, along with interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), and FOXP3 genes in patients with severe COVID-19 to provide additional insights regarding the regulation of these cytokines during COVID-19 infection. Method(s): Peripheral blood mononuclear cells were isolated from two groups, including severe COVID-19 patients and healthy con-trols. Ribonucleic acid was extracted to evaluate the expression level of IFN-a, IFN-b, IFN-g, IFN-la, IL-1, IL-6, IL-10, and FOXP3 genes using real-time polymerase chain reaction. The correlations between the expression levels of these genes were also assessed. Result(s): A total of 40 samples were divided into two groups, with each group consisting of 20 samples. When comparing the severe COVID-19 group to the controls, the expression levels of IFN-g, tumor necrosis factor-alpha (TNF-alpha), IL-6, and IL-10 genes were sig-nificantly higher in the severe COVID-19 group. The two groups had no significant differences in IFN-a, IFN-b, IFN-la, IL-1, and FOXP3 expression. The correlation analysis revealed a negative correlation between type I and type III IFNs (i.e., IFN-a and IFN-la) and pro-inflammatory cytokines (i.e., IL-1 and IL-10). Conclusion(s): This study suggests the possible upregulation of IFN-g, IL-6, IL-10, and TNF-alpha during SARS-CoV-2 pathogenicity. The pre-liminary findings of this study and those reported previously show that the levels of IFNs and pro-and anti-inflammatory cytokines are not uniformly expressed among all COVID-19 patients and might differ as the disease progresses to the severe stage.Copyright © 2023, Author(s).

2.
Front Immunol ; 12: 701273, 2021.
Article in English | MEDLINE | ID: covidwho-1332121

ABSTRACT

SARS-CoV-2 infection leads to a highly variable clinical evolution, ranging from asymptomatic to severe disease with acute respiratory distress syndrome, requiring intensive care units (ICU) admission. The optimal management of hospitalized patients has become a worldwide concern and identification of immune biomarkers predictive of the clinical outcome for hospitalized patients remains a major challenge. Immunophenotyping and transcriptomic analysis of hospitalized COVID-19 patients at admission allow identifying the two categories of patients. Inflammation, high neutrophil activation, dysfunctional monocytic response and a strongly impaired adaptive immune response was observed in patients who will experience the more severe form of the disease. This observation was validated in an independent cohort of patients. Using in silico analysis on drug signature database, we identify differential therapeutics that specifically correspond to each group of patients. From this signature, we propose a score-the SARS-Score-composed of easily quantifiable biomarkers, to classify hospitalized patients upon arrival to adapt treatment according to their immune profile.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity/genetics , Adult , Aged , Antiviral Agents/therapeutic use , Biomarkers , COVID-19/therapy , Cohort Studies , Female , Hospitalization , Humans , Inflammation/genetics , Male , Middle Aged , Precision Medicine , Prospective Studies , Severity of Illness Index , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL